skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kuech, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use diamond nanoparticles (DNPs) wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) and bilayers composed of either pure DOPC or a mixture of DOPC/DOPG to investigate the influence of membrane phospholipid composition and net surface charge on nanoparticle-membrane interactions and the extent of nanoparticle adhesion to supported phospholipid bilayers. Our results show that in all cases electrostatic attractions between the negatively charged bilayer and cationic PAH-DNP were responsible for the initial attachment of particles, and the lateral electrostatic repulsion between adsorbed particles on the bilayer surface determined the final extent of PAH-DNP attachment. Upon attachment, NPs attract lipids by the contact ion pairing between the ammonium groups on PAH and phosphate and glycerol groups on the lipids and acquire a lipid corona. Lipid corona formation on the PAH-DNP reduces the effective charge density of the particle and is in fact a key factor determining the final extent of NP attachment to the bilayer. Incorporation of DOPG to the bilayer leads to a decrease in efficiency and final extent of attachment compared to DOPC alone. The reduction in PAH-DNP attachment in the presence of DOPG is attributed to the adsorption of free PAH in equilibrium with bound PAH in the nanoparticle solution, thus reducing electrostatic attraction between PAH-DNPs and SLBs. This leads to an increase in hydrogen bonding interactions between lipid headgroups that limits extraction of phospholipids from the bilayer by PAH-DNP, lessening the reduction in interparticle repulsion achieved by acquisition of a lipid corona. Our results indicate that the inclusion of charged phospholipids in SLBs changes bilayer rigidity and stability and hinders the attachment of PAH-DNPs by preventing lipid extraction from the bilayer. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    A multistep phase sequence following the crystallization of amorphous Al2O3 via solid-phase epitaxy (SPE) points to methods to create low-defect-density thin films of the metastable cubic γ-Al2O3 polymorph. An amorphous Al2O3 thin film on a (0001) α-Al2O3 sapphire substrate initially transforms upon heating to form epitaxial γ-Al2O3, followed by a transformation to monoclinic θ-Al2O3, and eventually to α-Al2O3. Epitaxial γ-Al2O3 layers with low mosaic widths in X-ray rocking curves can be formed via SPE by crystallizing the γ-Al2O3 phase from amorphous Al2O3 and avoiding the microstructural inhomogeneity arising from the spatially inhomogeneous transformation to θ-Al2O3. A complementary molecular dynamics (MD) simulation indicates that the amorphous layer and γ-Al2O3 have similar Al coordination geometry, suggesting that γ-Al2O3 forms in part because it involves the minimum rearrangement of the initially amorphous configuration. The lattice parameters of γ-Al2O3 are consistent with a structure in which the majority of the Al vacancies in the spinel structure occupy sites with tetrahedral coordination, consistent with the MD results. The formation of Al vacancies at tetrahedral spinel sites in epitaxial γ-Al2O3 can minimize the epitaxial elastic deformation of γ-Al2O3 during crystallization. 
    more » « less
  4. The composition, orientation, and conformation of proteins in biomolecular coronas acquired by nanoparticles in biological media contribute to how they are identified by a cell. While numerous studies have investigated protein composition in biomolecular coronas, relatively little detail is known about how the nanoparticle surface influences the orientation and conformation of the proteins associated with them. We previously showed that the peripheral membrane protein cytochrome c adopts preferred poses relative to negatively charged MPA-AuNPs. Here, we employ molecular dynamics simulations and complementary experiments to establish that cytochrome c also assumes preferred poses upon association with nanoparticles functionalized with an uncharged ligand, and specifically ω-(1-mercaptounde-11-cyl)hexa(ethylene glycol) (EG6). We find that the display of the EG6 ligands is sensitive to the curvature of the surface—and consequently, the effective diameter of the nearly spherical nanoparticle core—which in turn affects the preferred poses of cytochrome c. 
    more » « less